Search results

Search for "near-field etching" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • contribution in these NDs is due to nearby nitrogen impurities rather than surface states. Improved ND NV center electron spin properties were obtained in [48] by a room-temperature near-field etching method. This is based on application of a He–Cd ultraviolet laser (325 nm), which has a longer wavelength than
PDF
Album
Review
Published 04 Nov 2019

Angstrom-scale flatness using selective nanoscale etching

  • Takashi Yatsui,
  • Hiroshi Saito and
  • Katsuyuki Nobusada

Beilstein J. Nanotechnol. 2017, 8, 2181–2185, doi:10.3762/bjnano.8.217

Graphical Abstract
  • realization of flat surfaces on the angstrom scale is required in advanced devices to avoid loss due to carrier (electron and/or photon) scattering. In this work, we have developed a new surface flattening method that involves near-field etching, where optical near-fields (ONFs) act to dissociate the
  • molecules. ONFs selectively generated at the apex of protrusions on the surface selectively etch the protrusions. To confirm the selective etching of the nanoscale structure, we compared near-field etching using both gas molecules and ions in liquid phase. Using two-dimensional Fourier analysis, we found
  • that near-field etching is an effective way to etch on the scale of less than 10 nm for both wet and dry etching techniques. In addition, near-field dry etching may be effective for the selective etching of nanoscale structures with large mean free path values. Keywords: Angstrom-scale flatness
PDF
Album
Full Research Paper
Published 18 Oct 2017

Surface improvement of organic photoresists using a near-field-dependent etching method

  • Felix J. Brandenburg,
  • Tomohiro Okamoto,
  • Hiroshi Saito,
  • Benjamin Leuschel,
  • Olivier Soppera and
  • Takashi Yatsui

Beilstein J. Nanotechnol. 2017, 8, 784–788, doi:10.3762/bjnano.8.81

Graphical Abstract
  • have developed a near-field etching technique that provides selective etching of surface protrusions, resulting in an atomically flat surface. To achieve finer control, we examine the importance of the wavelength of the near-field etching laser. Using light sources at wavelengths of 325 and 405 nm
  • reduction of the surface roughness was observed as compared to the 325 nm light. These results indicate that even wavelengths above 325 nm can cause surface roughness improvements without notably changing the structure of the photoresist. Keywords: near-field etching; organic photoresists; surface
  • , there have been efforts to reduce the usage of the rare-earth material CeO2 used in the chemical slurry of CMP [8]. So in order to achieve SR reduction without the use of CMP methods, a novel approach, called near-field etching, has been introduced. This fine-tuning technique has previously proven to be
PDF
Album
Full Research Paper
Published 05 Apr 2017

Observation and analysis of structural changes in fused silica by continuous irradiation with femtosecond laser light having an energy density below the laser-induced damage threshold

  • Wataru Nomura,
  • Tadashi Kawazoe,
  • Takashi Yatsui,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2014, 5, 1334–1340, doi:10.3762/bjnano.5.146

Graphical Abstract
  • performing optical near-field etching on a substrate prepared under the same conditions as sample A. The samples A and B had a minimum average surfaces roughnesses Ra of 0.20 nm and 0.13 nm, respectively [12]. Since we employed a continuous-wave laser with the wavelength of 532 nm and power of 2 W for
  • optical near-field etching, the sample B did not have any laser-induced damage or degradation caused by this preparation. Optical near-field etching is a surface planarization technique for selectively removing only minute protrusions in the surface of a substrate, and can flatten the planer substrate
PDF
Album
Full Research Paper
Published 21 Aug 2014
Other Beilstein-Institut Open Science Activities